Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse.

نویسندگان

  • F Papes
  • E L Kemper
  • G Cord-Neto
  • F Langone
  • P Arruda
چکیده

Lysine-oxoglutarate reductase and saccharopine dehydrogenase are enzymic activities that catalyse the first two steps of lysine degradation through the saccharopine pathway in upper eukaryotes. This paper describes the isolation and characterization of a cDNA clone encoding a bifunctional enzyme bearing domains corresponding to these two enzymic activities. We partly purified those activities from mouse liver and showed for the first time that both a bifunctional lysine-oxoglutarate reductase/saccharopine dehydrogenase and a monofunctional saccharopine dehydrogenase are likely to be present in this organ. Northern analyses indicate the existence of two mRNA species in liver and kidney. The longest molecule, 3.4 kb in size, corresponds to the isolated cDNA and encodes the bifunctional enzyme. The 2.4 kb short transcript probably codes for the monofunctional dehydrogenase. Sequence analyses show that the bifunctional enzyme is likely to be a mitochondrial protein. Furthermore, enzymic and expression analyses suggest that lysine-oxoglutarate reductase/saccharopine dehydrogenase levels increase in livers of mice under starvation. Lysine-injected mice also show an increase in lysine-oxoglutarate reductase and saccharopine dehydrogenase levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and characterization of bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase from developing soybean seeds.

Both in mammals and plants, excess lysine (Lys) is catabolized via saccharopine into alpha-amino adipic semialdehyde and glutamate by two consecutive enzymes, Lys-ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH), which are linked on a single bifunctional polypeptide. To study the control of metabolite flux via this bifunctional enzyme, we have purified it from developing soybe...

متن کامل

Characterization of the two saccharopine dehydrogenase isozymes of lysine catabolism encoded by the single composite AtLKR/SDH locus of Arabidopsis.

Arabidopsis plants possess a composite AtLKR/SDH locus encoding two different polypeptides involved in lysine catabolism: a bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) enzyme and a monofunctional SDH enzyme. To unravel the physiological significance of these two enzymes, we analyzed their subcellular localization and detailed biochemical properties. Sucrose ...

متن کامل

Regulation of lysine catabolism in Arabidopsis through concertedly regulated synthesis of the two distinct gene products of the composite AtLKR/SDH locus.

Lysine catabolism in plants is initiated by a bifunctional LKR/SDH (lysine-ketoglutarate reductase/saccharopine dehydrogenase) enzyme encoded by a single LKR/SDH gene. Yet, the AtLKR/SDH gene of Arabidopsis also encodes a second gene product, namely a monofunctional SDH. To elucidate the regulation of lysine catabolism in Arabidopsis through these two gene products of the AtLKR/SDH gene, an ana...

متن کامل

Effects of supersuppressor genes on enzymes controlling lysine biosynthesis in Saccharomyces.

Yeast supersuppressor genes capable of masking the effects of several lysine mutant genes (ly(1-1), ly(9-1), ly(2-1)) were studied with respect to their effects on the respective enzymes (saccharopine dehydrogenase, saccharopine reductase, and alpha-amino-adipic acid reductase). In all strains tested, the supersuppressors functioned by allowing enzyme synthesis not found in the unsuppressed mut...

متن کامل

Lysine metabolism in mammals.

The enzymes involved in the initial degradative steps of lysine metabolism, lysine-2-oxoglutarate reductase and saccharopine dehydrogenase, were studied and their activities in different mammals compared. Values obtained in human, rat, pig, dog, cat, ox and sheep liver indicated that in vitro, appreciable degradation of lysine to saccharopine (4-6nmol/min per mg of protein) occurred. The specif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 344 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1999